Growth and branching of gold nanoparticles through mesoporous silica thin films.
نویسندگان
چکیده
Composite materials made of mesoporous oxide thin films containing metallic nanoparticles are of high interest in various fields, including catalysis, biosensing and non-linear optics. We demonstrate in this work the fabrication of such composite materials containing a sub-monolayer of gold nanoparticles (GNPs) of various shapes covered with mesoporous silica thin films. Additionally, the shape of the GNPs (and thus their optical properties) can be modified in situ through seeded growth and branching. Such growth proceeds upon wetting with HAuCl(4) solution, a surfactant (cetyltrimethylammonium bromide, CTAB) and a mild reducing agent (ascorbic acid, AA). The effect of varying several reaction parameters (time and CTAB and AA concentrations) was evaluated, showing that more anisotropic particles are obtained at longer reaction times, lower CTAB concentration and higher AA concentration. The final shape of the GNPs was also found to depend on their initial shape and size, as well as the pore size of the mesoporous film covering them. Because the growth proceeds through the pores of the film, it may lead to shapes that are not easily obtained in solution, such as particles with branches on one side only. Finally, we have confirmed that no damage was induced to the mesoporous silica structure during the growth process and thus the final particles remain well covered by the thin film, which can eventually be used as a filter between the GNPs and the outer medium.
منابع مشابه
Gold Incorporated Mesoporous Silica Thin Film Model Surface as a Robust SERS and Catalytically Active Substrate.
Ultra-small gold nanoparticles incorporated in mesoporous silica thin films with accessible pore channels perpendicular to the substrate are prepared by a modified sol-gel method. The simple and easy spin coating technique is applied here to make homogeneous thin films. The surface characterization using FESEM shows crack-free films with a perpendicular pore arrangement. The applicability of th...
متن کاملGradual Growth of Gold Nanoseeds on Silica for Silica@Gold Core-Shell Nanoparticles and Investigation of Optical Properties
Metal nanoshells consists of a dielectric core surrounded by a thin noble metal shell, possess unique optical properties that render nanoshells attractive for use in different technologies. This paper reports a facile method for growth of small gold nanoparticles on the functionalized surface of larger silica nanoparticles. Mono-dispersed silica particles and gold nanoparticles were prepared by...
متن کاملPreparation of Nanocomposite Plasmonic Films Made from Cellulose Nanocrystals or Mesoporous Silica Decorated with Unidirectionally Aligned Gold Nanorods
Using liquid crystalline self-assembly of cellulose nanocrystals, we achieve long-range alignment of anisotropic metal nanoparticles in colloidal nanocrystal dispersions that are then used to deposit thin structured films with ordering features highly dependent on the deposition method. These hybrid films are comprised of gold nanorods unidirectionally aligned in a matrix that can be made of or...
متن کاملGradual Growth of Gold Nanoseeds on Silica for Silica@Gold Core-Shell Nanoparticles and Investigation of Optical Properties
Metal nanoshells consists of a dielectric core surrounded by a thin noble metal shell, possess unique optical properties that render nanoshells attractive for use in different technologies. This paper reports a facile method for growth of small gold nanoparticles on the functionalized surface of larger silica nanoparticles. Mono-dispersed silica particles and gold nanoparticles were prepared by...
متن کاملTemplated Growth of Surface Enhanced Raman Scattering-Active Branched Gold Nanoparticles within Radial Mesoporous Silica Shells
Noble metal nanoparticles are widely used as probes or substrates for surface enhanced Raman scattering (SERS), due to their characteristic plasmon resonances in the visible and near-IR spectral ranges. Aiming at obtaining a versatile system with high SERS performance, we developed the synthesis of quasi-monodisperse, nonaggregated gold nanoparticles protected by radial mesoporous silica shells...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 4 3 شماره
صفحات -
تاریخ انتشار 2012